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Linear regression is a frequently-used statistical technique in marine ecology, either to model simple relation-
ships or as a component of more complex models. The apparent simplicity of this technique often obscures its
far more complex underpinnings, upon which its validity, and ultimate ecological interpretations, wholly
depend. We present a non-technical review of the foundations of linear regression and its application in marine
ecology, with emphasis on correct model specification, the different concepts of linearity, the issues surrounding
data transformation, the assumptions which must be respected, and validation of the regression model. The
necessity of reporting the results of regression diagnostics is stressed; contrary to widespread practice in marine
ecology, R2 and p-values alone do not provide sufficient evidence to form conclusions.
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1. Introduction

When analyzingmarine ecological data, what could be simpler than
a linear regression? Until recently, Excel® would do it without even

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jembe.2015.09.010&domain=pdf
http://dx.doi.org/10.1016/j.jembe.2015.09.010
mailto:Peter.Beninger@univ-nantes.fr
http://dx.doi.org/10.1016/j.jembe.2015.09.010
http://www.sciencedirect.com/science/journal/00220981
www.elsevier.com/locate/jembe


82 I. Boldina, P.G. Beninger / Journal of Experimental Marine Biology and Ecology 474 (2016) 81–91
using the term itself (‘trend’ was so much more user-friendly!). In this
ubiquitous statistical technique, as in all others, the devil is not only in
the details, but also in the assumptions; for what we have here is a
mathematical technique which will always work perfectly in the ab-
stract world of mathematics, but which will never work perfectly, and
often will not work very well at all, in the real world. Linear regression
is an attempt to describe complex, incompletely understood real-life
processes in the simplest and most accurate (aka mathematical) terms
possible; at times the correspondence is rather good, but at others, it
is like fitting a Phillips screwdriver into a Robertson screw. In other
words, the mathematical construct is a model which we hope to use
to describe a real-life relation. And in the words of the patriarch of
modelization, George Box, ‘All models are wrong; some are useful’
(Box, 1976).

In a previous paperwe attempted to provide guidelines for strength-
ening statistical usage in marine biology, with the central concerns of
frequentist (hypothesis-testing) and inferential approaches (Beninger
et al., 2012). In the present work, we wish to address another founda-
tional aspect of statistical analysis in marine ecology: linear regression.

Like all statistical techniques, linear regression is often considered by
non-statisticians to be a simple,mechanical tool, performed at the touch
of a computer key, without proper consideration of its restrictions,
assumptions, and weaknesses, thereby covertly combining ease of
operation with ease of error. The purpose of this review is to give a
non-technical overview of linear regression principles, as well as the
precautions to avoid the most common and serious pitfalls. We pay
special attention to the most frequently-violated assumptions of linear
regression, in the hope that incorrect usage might diminish in the near
future.

At the outset, we must state what linear regression is, and what we
hope to accomplish with it, before delving into whether or not we can
actually do it, and how.

1.1. What is linear regression?

Regression analysis is a generic term for a group of different statisti-
cal techniques. The purpose of all these techniques is to examine the
relationship between variables. Themost common type of linear regres-
sion is Type I regression, inwhichwe attempt to determine the relation-
ship between dependent and explanatory or independent variables.
Less well-known is Type II regression, in which there are no indepen-
dent variables, and all variables can influence each other. A short glossa-
ry of the linear regression types is provided in Table 1, and these topics
will be developed in the following sections. We will focus on Type I
linear regression, which is widely used in many different contexts in
aquatic ecology, e.g. the species-area relationship (Begon et al., 1996;
Peake and Quinn, 1993), the relationship between population density
and body size of benthic invertebrate species (Schmid, 2000), the char-
acterization of spatial patterning (Beninger and Boldina, 2014; Seuront,
2010), the multiple fields in which allometric relations are prominent,
e.g. suspension-feeding, population dynamics, metabolic scaling
(Carey et al., 2013; Cranford et al., 2011; Gosling, 2015; Hirst, 2012;
Table 1
A short glossary of frequently-misunderstood linear regression terms.

Linear regression Requires linear models (linear in parameters) which
may have curvilinear form

Non-linear regression Requires non-linear models (non-linear in parameters)
Multiple linear regression Regression with several independent variables
Polynomial linear regression A special case of multiple linear regression describing

a curvilinear relationship
Type I linear regression Assumes an asymmetrical relationship between

dependent and independent variables
Type II linear regression Assumes a symmetrical relationship between

variables; there is no independent variable
Estimator Function used to calculate the regression equation

from the observed data
Robinson et al., 2010), DEB modeling (Duarte et al., 2012; Rosland
et al., 2009), relation of phytoplankton cell size and abiotic factors
(Finkel et al., 2010), etc. Although this technique is most frequently
used to model relationships which are graphically characterized by a
straight line, it is important to note that it may also be used to model
certain curvilinear relationships (Montgomery and Peck, 1992). This
aspect will be explained in Section 2.1.

1.2. What can we accomplish with linear regression?

There are three possible objectives for linear regression analysis in
marine ecology:

1) Stating the nature of the relationship between two variables. If our
only purpose is to state that ‘this is the equation which appears to
characterize the relationship’, then we have very few preconditions
and assumptions to worry about. However, this is not a very useful
tool in marine ecology, where we usually wish to predict the value
of the dependent variable for a given value of the independent
variable (e.g. what sardine or tuna weight corresponds to what
sardine or tuna length-values much quicker and easier to measure
shipboard?)

2) Dependent variable prediction within the range of observed depen-
dent variables. Here we simply wish to predict any y-value within
those corresponding to the maximum and minimum observed
x-values, e.g. what weight for any length which falls within the
x-coordinates of the maximum and minimum weight values. This
is a much more useful objective, but the trade-off is that it requires
more, and stricter, assumptions.

3) Dependent variable prediction beyond the range of observed depen-
dent variables. Here we attempt to boldly go where none of our data
has gone before, i.e. beyond the maximum and minimum observed
y-values. This extension of modeling has been used for everything
from enzyme kinetics to climate change. It is usually an attempt to
predict a future y-value, something humans have tried to do since
they became aware that there is a future. Naturally, this type of
objective carries the greatest load of restrictions, assumptions,
caveats, and risk of error.

1.3. From the mathematical to the statistical

Linear regression uses themodel of a straight line,whosemathemat-
ical equation is the familiar.

Y = a + bx

where a is the y-intercept and b is the slope of the line. Statisticians
prefer the notation.

Y = β0 + β1X1

for the population model (Greek letters used by convention), which
highlights the fact that the slope and y-intercept are both parameters
of the equation.

Much of the very real misunderstanding and misuse of linear
regression stems from the widespread tendency of marine ecologists
to assume that the abstract, perfect mathematical world can be used
to directly model themuchmessier real world. In the real world, an un-
known number of uncontrolled variables other than the independent
variable can influence the dependent variable, e.g. individual variations
in physiology, handling time of individual samples, or even atmospheric
pressure variations. We therefore know that other variables can influ-
ence the dependant variable, but we cannot identify them or measure
their magnitude. Furthermore, these variables may influence the de-
pendant variables in either an additive fashion (i.e. add their unknown
positive or negative values to the linear equation) or in a multiplicative
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fashion. Statisticians have grouped all the unknown variable contribu-
tions under a single term, ε, and given it the unfortunate name of
‘error term’. This name is used by convention and for convenience
only, a perfect example of mis-naming in the sciences, since much or
evenmost of this variationmay not be due to any real ‘error’, but rather
to stochastic events, the differences between individual organisms, etc.
(Fox, 2015).

Wemay therefore modify the linear equationmodel to better repre-
sent the real world thus:

Y = β0 + β1X1+ ε

where the error term is assumed to be additive. It will be seen that, far
from being an afterthought, the characteristics of the error term are a
central issue in regression analysis.

As the foundation for the whole edifice of linear regression, it is
worthwhile to examine each term of the regression equation in turn:

• Y is the dependent or outcome variable. It is also called the predicted
value, or, most commonly (and inappropriately), the fitted value

• X1 is the independent or explanatory variable; since it assists in deter-
mining the value of the dependent variable, it is also called a predictor

• β0 and β1 are the parameters of the regression model:
o β0 is the y-intercept, i.e. where x = 0. In real life situations, x rarely

equals 0 (there is no biological sense for x = 0), so the intercept
β0 has no concrete meaning and serves only to correctly position
the regression line with respect to the meaningful data points.

o β1 is the regression coefficient (aka slope of the regression line). The
regression coefficient β1 represents the mean change in the depen-
dent variable for one unit of change of the independent variable.

• ε— the error term— this term is never seen in the equations given in
most marine ecology papers, since it cannot be quantified (and its
influence and the effects of its characteristics are often unknown or
unsuspected), but its properties may hugely influence the equation.
It represents all the variation in Y that cannot be explained by the
variation in X. This is the mathematical way of quantifying the other
real-world effects on the dependent variable (Hoffmann and Shafer,
2015). Each y-value will be affected by this variation, so we can con-
sider an ‘error’ as the difference between the individual y value in a
Fig. 1. Summary of linear regression procedure. F
sample and the unknown true value in the population. Since the
effects of εmay range from very small (e.g. in enzyme kinetics) to stu-
pendously large (e.g. in stock-recruitment studies), and vary between
y-values from very little to verymuch, preoccupationwith themagni-
tude, and variation of ε is an extremely important aspect of regression
analysis. Since we cannot know the magnitude of ε (by definition
unknown), the only available strategy in this case is to reduce it as
much as possible, through controls and replication. Similarly, it is usu-
ally impossible to characterize the exact variation of ε (aka the error
distribution) in a population; however, we can test assumptions
about it in our samples, and this will allow us to judge whether or
not linear regression is a meaningful way of relating the dependent
and independent variables. We do this using the differences between
individual y-values in a sample and the corresponding y-values
predicted from the regression model (aka residuals, see below and
Fig. 3 — Quinn and Keough (2002). Residuals are estimates of the
true population error, and the term is often used interchangeably
with ε, in the same way that sample standard deviation is used to
reflect the population standard deviation. Ideally, residuals should
be randomly distributed; in other words, they should not show bias,
since statistical techniques are inoperable under conditions of bias.
The analysis of residuals is a very important, yet often — neglected
part of linear regression. Much more will be said of residuals analysis
when we describe correct linear regression procedure.
1.4. Overview of linear regression procedure

Regardless of how quickly and easily a software program will per-
form a linear regression, the approach comprises three consecutive
steps (Fig. 1), with potential pitfalls to be avoided at each step. The
first, and the most critical, step is to correctly specify the regression
model. The second is to determine the best estimation of the regression
parameters, and the third is to validate the model (e.g. test whether
the regression parameters are statistically different from zero and verify
the goodness of fit). The assumptions concerning the first and second
steps can be verified both before and after constructing the regression
model, since they concern the form of the model and the independent
variables included in it, as well as the distribution of residuals. The
third step is post-hoc: validation of the model. In the following section,
or explanation of BLUE, see Sections 3.1–3.2.



Fig. 2. Cerastoderma edule. Unpublished data. A. Log length (x) vs. log weight (y).
B. Diagnostic plot of residuals vs fitted values. If the data fit a linear model, the resid-
uals should be grouped near the zero horizontal line. The curved line is a calculated
LOESS curve which shows the directions of the distortions from linearity.
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the assumptions and post-hoc verification for simple and multiple line-
ar regression will be described together, as they are quite similar.

2. Choosing the correct type of regression

Although in the presentworkwe are only interested in linear regres-
sion, the following discussion will show that this includes types of
regression which analyze relationships other than those characterized
by single independent variables and straight lines, and therefore the
subject is rather more complex than often perceived. The process is
essentially iterative, and includes (1) determining the appropriate
functional form (itself dependent on the various ‘types’ of linearity),
and (2) for multiple regression, choosing the explanatory variables to
be included. Incorrect procedure may lead to violations of the assump-
tions and biased parameter estimates (i.e. values which deviate system-
atically from those of the real world).

2.1. The many faces of linearity

Like all scientific domains, statistics is afflicted with imprecise and
often misleading terminology. With respect to linear regression, the
very term linear can mean several completely different things, each
equally important: linearity in form, linearity in variables, and linearity
in parameters. Linearity in form refers to the common, and correct,
perception of a linear equation as a straight line. Linearity in variables
stipulates that the independent variable(s) (1) do not contain other
functions (exponents, trigonometric functions, etc.) and (2) in the
case of more than one independent variable, are related to each other
by summation (+), e.g. in a multiple linear regression equation:

Y = β0 + β1X1 + β2X2 + ε

Similarly, linearity in parameters stipulates that the regression
parameters also do not contain other functions, and are also related lin-
early to each other (simple summation), as is also the case in the above
example. An example of an equation linear in parameters but non-linear
in variables would be:

Y ¼ β0 þ β1X1 þ β2X1
2 þ ε ðExample 1Þ

Although one of the terms in this equation is a non-linear variable
(X1

2, a polynomial term), it is possible to use a type of linear regression
procedure called polynomial regression. Statistically speaking, polyno-
mial regression is still linear regression, so the underlying assumptions
are the same. Polynomial regressions (and particularly quadratic and
cubic polynomial) are often used in marine ecology to model parabolic
ormaximum-minimum relations, respectively (Legendre and Legendre,
2012; Zuur et al., 2007). However, we should note thatwhile it is easy to
fit a polynomial model to data, it is often difficult to ascribe any real
meaning or rationale to some of the terms, especially for higher-order
polynomials, and this is clearly undesirable in any model. A non-linear
model is preferable in such cases (Austin, 2007; Müller et al., 2010).

In contrast to non-linearity in variables, an equation may be non-
linear in parameters, but nonetheless linear in variables:

Y ¼ β0 þ β1β2X1 þ β2X2 þ ε ðExample 2Þ

Here the regression coefficients are multiplicative and therefore
non-linear. Note that, as indicated above, the relationships in these two
examples may be (first example) or are (second example) graphically
curvilinear. Although in the first example, multiple linear regression
may be performed directly, in the second example, other regression
techniques are necessary: either linearization via transformation, or
non-linear regression (Section 2.4).
In practice, researchers (knowingly or not) must choose the type
of regression model prior to performing the regression. If they believe
that the relation is linear, they will then perform a linear regression.
However, since the relation may simply appear to be linear in form,
for example from a scatterplot of raw data, it is absolutely essential
to verify this form (see below). The other two “types” of linearity (in
variables and parameters) are not verified in practice, but rather fixed
by the researcher prior to performing the regression.
2.2. Verification of linearity in form

Contrary to widespread belief, linear regression is not a way of
verifying whether a relationship is linear in form. Quite the opposite,
it is assumed at the outset that the relationship between dependent
and independent variables is linear, and only under this condition can
simple linear regression analysis correctly portray the characteristics
of this relationship. In practice, this means that we cannot just perform
a simple linear regression analysis to see if we obtain a statistically-
significant relationship, from which we conclude that the relationship
is linear. If simple linear regression is applied to data which present
a non-linear relationship, the results will under-estimate the true rela-
tionship, producing a biased slope and intercept, thus increasing the de-
gree of error for all three of the objectives of linear regression (Quinn
and Keough, 2002).

The simplest solution for verifying linearity in form is to plot the
raw data and visually inspect it before choosing the linear model. The
scatterplots of some data sets may be too ambiguous for this approach
(Fig. 2A); in these cases, a helpful technique is visual examination of
the residuals plot, i.e. residuals vs. predicted values (Fig. 2A and B).
Note that the horizontal axis in such a plot consists of the predicted
(or ‘fitted’) values (Y).

On the raw data graph, the relationship appears to be approximately
linear in form (Fig. 2A). However, if the relationship were truly linear
in form, the residuals would be symmetrically distributed around the
horizontal line on the residual plot. The considerable departure of
linearity at the extremities of the graph indicates that the model
makes systematic errors for small and large predictions (Fig. 2B). The
superimposed LOESS curve (Locally weighted scatterplot smoothing: a
non-parametric technique that graphically represents a curve of best
fit without assumptions of data distribution (Cleveland and Devlin,
1988) is not necessary but can facilitate the detection of linearity viola-
tion (technical note: an Excel® linear regression add-in allows the
construction of residuals vs fitted plots, without the LOESS function,
which can be found in R). Where the relation is not linear in form, it
is not possible to perform a simple linear regression; one of several
other options would be more appropriate, as described below.



85I. Boldina, P.G. Beninger / Journal of Experimental Marine Biology and Ecology 474 (2016) 81–91
2.3. Dealing with non-linearity in form

If the residual plot shows that the relationship is not linear in form,
there are several possible avenues for mitigating this problem. The
most straightforward are shown in Fig. 1:

1. Polynomial regression on original data (see Section 2.1)
2. Linear regression after linearization of the data through transformation
3. Non-linear regression on original data (a different set of techniques,

not considered here)

2.4. Transformation

Since themost common transformation inmarine ecology is the log-
transformation, especially in allometric studies (Cranford et al., 2011;
Ibarrola et al., 2012; Jennings et al., 2001; Katsanevakis et al., 2007;
Robinson et al., 2010), it warrants particular attention. If the data plot
suggests an exponential rather than a linear relationship between the
x and y variables, the corresponding model has the general form:

Y = aXb

At this stage of the discussion, we have left out the error term, since
we do not yet know whether it is additive or multiplicative. These
properties are part of what is known as the error structure.

The choice to be made is whether to log-transform the original data
and do linear regression afterwards, or to perform a non-linear regres-
sion on the original data. This issue has been vigorously debated with
respect to ecological data (Ballantyne, 2013; Glazier, 2013; Kerkhoff
and Enquist, 2009; Packard, 2009, 2013). Neither option is demonstra-
bly superior in all cases; rather, the performance of eachmodel depends
essentially on the nature of the error term (normal and additive or
lognormal and multiplicative — Cohen, 2003; Galton, 1879; Gingerich,
2000; Xiao et al., 2011).

In the case of a model which is non-linear in form, and for which it
is not possible to perform a polynomial regression because it is also
nonlinear in parameters (Section 2.1), there are two possibilities for
the relationship of the error term to the rest of the equation:

1. Additive error term: Yi = aXi
b + εi

Where Yi is the ith observation of the dependent variable, Xi is the
ith observation of the independent variable, εi the error term as-
sociated with the ith data point. The additive error model assumes
that the error term has a normal distribution across the range of
the independent variable. If a log-transformation is applied to
this model (usually when the data are log-transformed without
taking the properties of the error term into account), the conse-
quent back-transformation (from logarithmic to real-number
values) will be erroneous, thus eliminating the possibility of using
a linear regression procedure — including the ubiquitous Ordinary
Least Squares (OLS) method, which is explained below (Myers,
1990; Packard and Boardman, 2008). This type of model is called in-
trinsically nonlinear, because it cannot be linearized (Cohen, 2003),
and nonlinear regression on original data is therefore the most ap-
propriate procedure (Gingerich, 2000; Xiao et al., 2011). This is in
stark contrast to the widespread practice of log-transformation of
data sets characterized by exponential relationships, and in particu-
lar the huge literature based on, or involving, allometric data (Xiao
et al., 2011).

2. Multiplicative error term
Linear regression methods on log-transformed data require a multi-
plicative distribution of residuals of the original data (Kerkhoff and
Enquist, 2009; Rawlings et al., 1998):

Yi ¼ aXi
b þ eεi
Where Yi is the ith observation of the dependent variable, Xi is the ith
observation of the independent variable, εi the error term associated
with the ith data point, and e the natural log base.
The multiplicative error model assumes that the error term has a
lognormal distribution and, in ecological data, its variance usually
and naturally increases with an increase in the Y values. In such a
model, the error is multiplied by the value of the dependent variable.
After taking the log of both sides of the equation we obtain:

Log Yi = loga + b logXi + εi

In contrast to the previous situation where the error term was addi-
tive, this linearized form of the initial equation can be modeled with
linear regression; in other words, this type of model is intrinsically
linear. It should be emphasized that log-transformation is an appro-
priate linearization procedure if and only if the error term ismultipli-
cative. Therefore, whenever log transformation is performed, it
should be justified by a clear statement of the nature of the error
term; this necessary information is almost universally lacking in
the marine ecological literature.
The next logical step is thus to ascertainwhether the error term is ad-
ditive or multiplicative. However, there are many things we do not,
and cannot, directly know about ε, including whether it is additive
or multiplicative! We find ourselves in much the same situation as
that of particle physicists, who cannot directly visualize sub-atomic
particles, but must deduce their existence based on their properties
alone. An indirect method has been proposed, which performs both
types of regression (non-linear on the raw data and linear on log-
transformed data), followed by residuals analysis in both cases
(Cohen, 2003; Draper and Smith, 1998). Hence, if the error term is
additive and we perform linear regression on log-transformed data,
the residuals graph will reveal that one or more assumptions are
not satisfied. However, mis-specification of the nature of the error
term is only one possible cause of a failed residuals analysis; there-
fore, a more reliable solution for the determination of error structure
via analysis of residuals has been devised, based on the now-familiar
AIC criterion, rather than on visual analysis of the residuals (Xiao
et al., 2011).
Despite the necessity of error structure (i.e. residuals) analysis in
linear regression, it is very frequently omitted (Xiao et al., 2011), es-
pecially in the marine ecology literature, where log-transformation
of data is routinely performed without consideration of the error
structure. Informal discussions with colleagues at meetings suggest
that this fundamental issue is, quite simply, not well known to
many marine ecologists.

2.5. Choosing variables to include/multiple linear regression

Since wemay be able to identify and test more than one indepen-
dent variable which influences the dependant variable, we can include
them in the equation as

Y = β0 + β1X1+ β2X2+ ε.

This type of model is called multiple linear regression. Contrary
to simple linear regression, its graphical representation is not straight-
forward (we can plot partial regression equations, holding several inde-
pendent variables constant, but no single plot will be feasible beyond
three independent variables). We include it in this discussion because
technically it is a linear model, and also because the most common
linear regression technique, Ordinary Least Squares (OLS) is often
used to specify its parameters (Sheather, 2009). Although the model
itself can be linear or curvilinear in form, it should not be confused
with polynomial regression (Section 2.1).

The determination of independent or explanatory variables which
should be included in the multiple linear regression model is governed
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by one or more theoretical considerations, prior knowledge, or in-
formed judgment (aka common sense). There are two main sources of
error in model specification: omitting relevant variables (underfitting)
or including irrelevant variables (overfitting). Obviously, the conse-
quences of underfitting are the most serious, engendering biased
regression coefficients — in other words, the resulting regression
model is wrong. Overfitting does not bias the regression coefficients,
so the regression model remains correct, albeit with a loss of efficiency,
and an increase in the probability of a Type II error (Hoffmann and
Shafer, 2015). One of the corollaries of George Box's famous ‘all models
are wrong’ statement is

‘Since all models are wrong, the scientist cannot obtain a ‘correct’
one by excessive elaboration. On the contrary, following William
of Occam, he should seek an economical description of natural
phenomena. Just as the ability to devise simple but evocative
models is the signature of the great scientist, so overelaboration
and overparametrization is often the mark of mediocrity.’ (Box,
1976).

3. Estimation of the parameters in the regression model

The next step of the regression analysis is the estimation of the
model parameters, based on the collected data. The rule or function
used to calculate the regression equation from the observed data is
called the estimator. Although there are several possible estimators,
each with its merits, the overwhelmingly popular OLS estimator is
such a conventionalmethod that inmarine ecology, it is virtually synon-
ymous with linear regression itself. The popularity of the OLSmethod is
due partly to particularly convenient characteristics of the OLS estima-
tor (see below), partly to historical reasons (it is one of the oldest statis-
tical methods), and partly to the fact that this technique is the default,
and sometimes unique, program in all statistical software packages,
including Excel®. It is based on the principle of minimizing the sum of
the squared residuals (i.e. squared vertical distances between observed
and predicted values — Fig. 3). This technique assumes asymmetry in
the nature of the dependent and independent variables (Type I regres-
sion), i.e. a change in the independent variable engenders a change
in the dependent variable, and not vice versa (Weisberg, 2005), as
opposed to Type II regression, where the relationship of the variables
is symmetrical (a change in either induces a change in the other —
Laws and Archie, 1981; McArdle, 2003). There is a considerable litera-
ture concerned with the correct contexts for Type I and Type II regres-
sion, especially in the field of allometry (Legendre and Legendre, 2012;
Warton et al., 2006).

The OLS method requires that independent variables be either fixed
by the study design or be measured without error.
Fig. 3.Modeling of the regression line using the OLS estimator. Gray points: actual values
of the dependent variable. Black points: predicted values of the dependent variable.
3.1. Conditions for proper use of OLS

TheOLS estimator has several convenient and desirable properties. It
is considered ‘BLUE’ i.e. the Best Linear Unbiased Estimator (Monahan,
2008; Weisberg, 2005) under certain assumptions (Gauss–Markov
assumptions, see Section 3.2). To explain these characteristics, OLS is
an Estimator because, like many statistical techniques, it is a procedure
which estimates the true population parameters of the function, from
observed values within random samples of the population (Panik,
2005). It is a Linear estimator because it is a linear function of the depen-
dent Y variables (Bingham and Fry, 2010). It is the Best (i.e. most
efficient) estimator of the linear parameters because it produces the
least sampling variability (Fig. 4). It is Unbiased because it does not
systematically over- or under-estimate the true population parameter
β (Fig. 4). In other words, the OLS estimator uses the sample data in
the most efficient way for determining the regression line.

The Gauss–Markov theorem states that the OLS estimator can only
be BLUE if certain assumptions are met (see below). Wemust therefore
verify all the assumptions, one by one, after performing the regression
(aka regression diagnostics). Violation of one or more assumptions
means that a better-fitting model could be found. As is always the
case, working within the parametric framework means a trade-off
between statistical power and severity of constraints. Although it can
be very tempting to use OLS without testing the assumptions, since
the result is often an estimated regression coefficient (slope) with a
low p-value, and hence a seemingly interesting conclusion, the results
would in fact be invalid.

Despite the absolute necessity of regression diagnostics, this proce-
dure is either rarely used, or, in the best-case scenario, simply unreport-
ed in the marine ecological literature, calling into question the validity
of a very great number of published results. Only the systematic testing
and reporting of regression diagnostics will improve the reliability of
research in which OLS is so frequently used (Faraway, 2014; Quinn
and Keough, 2002; Rawlings et al., 1998).

3.2. Striving for BLUE: Gauss–Markov assumptions required for use of OLS

Ideally, our regression estimator should be perfect, i.e. BLUE. OLS is
BLUE only if it fulfills a series of conditions known as the Gauss–Markov
assumptions (Bingham and Fry, 2010; Demidenko, 2013); this con-
straint also applies to polynomial regression (which, contrary to com-
mon perception, is actually a form of linear regression). Herein we
present the assumptions most likely to be violated in marine ecological
work.

It is obvious to every biologist that the living world does not
completely conform to the ideal world of mathematics (or rather, that
we will probably never be able to completely characterize the living
world mathematically). It is thus not surprising that ecological data
very often fails to satisfy one or more of the assumptions necessary for
Fig. 4. Sampling distribution of different estimators of the population parameter β.



Fig. 5.Diagnostic plot for testing the assumption of zero conditional mean for the relation
log weight–log length in the cockle, Cerastoderma edule. Unpublished data.
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linear regression of any type, includingOLS (Zuur et al., 2009). Nonethe-
less, it is very important to verify each of these assumptions, and then to
understandwhat happens if one ormore assumptions fail, as outlined in
the sections that follow. We also provide indications for mitigation of
assumption violations and to what extent the regression model can
still be used.

3.2.1. Linearity in parameters
As mentioned above (Section 2.1), linear regression requires linear-

ity in parameters, which means that the coefficients of the regression
equationmust be linear.Wemention this again simply because, formally,
it is one of the Gauss-Markov assumptions.

3.2.2. Non-perfect collinearity for multiple regression
Two independent or explanatory variables are perfectly collinear

when they are intrinsically related by a linear relationship, and we can
compute the value of one variable if we know the value of another.
One of the variables is therefore redundant and must be removed
from the regression equation (Zuur et al., 2007). Note that while the
variables should not be related by linear relationship, they can be relat-
ed by a non-linear (e.g. quadratic) relationship. In practice, this requires
a knowledge of the relationships between variables which we may or
may not possess, e.g. salinity and conductivity.

The remaining pertinent Gauss–Markov assumptions are all relevant
to the residuals, rather than to the data themselves.

3.2.3. Correlation between the independent variables and the error term
This is one of themost important assumptions concerning the resid-

uals, but probably the least known (Weisberg, 2005). It is formally
called the ‘Zero conditional mean’ assumption, although this unfortu-
nate designation gives no easily-understandable indication of its
meaning. In simple terms: all of the independent variables should be
uncorrelated with the error term. If the error term changes with the
independent variable X (i.e. if there is a relationship between them),
the variation in the dependent variable Y is influenced not only by the
change in the independent variable X but also by the change in the
error term. Such a correlation will result in biased estimates of the
regression coefficient.

The assumption of zero conditional mean fails if an important
independent variable is omitted or if the functional relationship is
mis-specified (the first step of regression analysis). The violation of
this assumption most often occurs when the independent variables
are not included in the correct algebraic form. An example would be a
study of the effect of abiotic factors on the larval development of shrimp
where one of the explanatory variables is water temperature. If the true
relationship includes the temperature aswell as the squared term of the
temperature, accounting for the observed non-linear effect of tempera-
ture, then omitting to include the squared term of temperature will
result in a mis-specified functional relationship.

This crucial assumptionmay be checked byplotting residuals against
the independent variable (X). In an allometric study relating shell
length and dry weight of cockles, for example (Fig. 5), it is clear that in
the middle and right regions of the graph, the data points are grouped
below the zero line, so there is a relationship between residuals and x
values, therefore violating the assumption of zero conditional mean.

Such a violation is easily corrected by putting the independent
variables into correct algebraic form, and/or including omitted variables
(in the case of multiple linear regression).

3.2.4. Absence of autocorrelation in the error term
The presence of autocorrelation in the error term (‘officially’, and

once again ambiguously, called independence of residuals) means that
some part of the error term exhibits correlation with another part.
Since this is definitely not a random variation, it implies that some
useful information has not been included in the regression model
(Hoffmann and Shafer, 2015; Quinn and Keough, 2002). This type of
situation is often encountered in marine ecology, notably with data
collected repeatedly over time (time series data) and with data collect-
ed across spatial units such as transects, quadrats, etc. (Boldina and
Beninger, 2013; Fortin and Dale, 2005; Legendre and Legendre, 2012;
Whitton et al., 2015). Usually there are stronger associations among
errors in adjacent time/space periods than in those that are farther
apart (Legendre and Legendre, 2012).

Although autocorrelation in residuals does not affect the unbiased-
ness of the OLS estimator, it no longer has a minimum variance, which
is necessary for BLUE (Fig. 4). In such a situation, the forecasts, confi-
dence intervals, and scientific insights yielded by a regression model
may be (at best) inefficient or (at worst) seriously biased or misleading
(Glover et al., 2011).

Positive autocorrelation in residuals (the most frequent case in
marine ecology) is characterized by standard errors of the estimated
parameters which are smaller than the true standard errors. This in-
creases the probability of type I error, i.e. unwarranted rejection of the
null hypothesis (Cowpertwait and Metcalfe, 2009; Dale and Fortin,
2002; Legendre, 1993; Zuur et al., 2010).

The assumption of independence of residuals is one of the most
commonly - violated assumptions in marine ecology, probably due to
a lack of recognition of the importance of testing for the presence of
autocorrelation in residuals. The same situation is observed in terrestrial
ecology (Beale et al., 2010; Dormann, 2007), traditionally a field with a
stronger statistical culture.

The simplest way to detect autocorrelation in residuals is to analyze
the plot of residuals against time or sequential order (Fig. 6).

The presence of autocorrelation in residuals (positive, negative or
cyclical) is not always obvious from the residuals plot. It is therefore
prudent to perform a test for autocorrelation in residuals, of which the
most common is the Durbin–Watson statistic (Durbin and Watson,
1951) available in Excel®. The value of the Durbin–Watson statistic
ranges from 0 to 4, and the rule of thumb is that the residuals are not
correlated if the Durbin–Watson statistic is approximately 2. It should
be noted that this test is used only for autocorrelation between adjacent
values (aka first-order correlation — Chatterjee and Hadi, 2012). Al-
though this is the most frequent case in marine ecology (e.g. adjacent
sampling dates, adjacent sampling sites), second- or third-order
autocorrelation, even without first-order autocorrelation, may also be
encountered. Other patterns of autocorrelation can be detected using
the more sophisticated techniques of Moran'sIfor spatial autocorrela-
tion (Legendre, 1993) and autocorrelation function for time series
data (Kirchgässner and Wolters, 2007).

If the assumption of absence of autocorrelation in the error term
fails, a variety of statistical techniques exist which are designed for



Fig. 6. Example of a residual plot for testing the presence of autocorrelation in residuals.
Data simulated in R.
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modeling data with autocorrelated errors. Although detailed descrip-
tion of these methods is beyond the scope of this paper, interested
readers are referred to techniques such as ARIMA, wavelets or mixed —
effect models for time series data (Demidenko, 2013; Kirchgässner
and Wolters, 2007), or Generalized Least Squares-S, Simultaneous
Autoregressive Models, Generalized Additive Mixed Models and
Bayesian Conditional Autoregressive models for spatial data (Beale
et al., 2010; Sheather, 2009).

3.2.5. Homoscedasticity
Homoscedasticity (aka homogeneity of variance) means that the

variance of errors is the same for all values of the independent variable.
This is essentially equivalent to the distribution of residuals, which we
may determine once again from a plot of residuals (residuals vs ‘fitted’
y-values). We emphasize again that the assumption of homoscedas-
ticity for linear models is not about the independent and dependent
variables (YorX), but about the error term, represented by the residuals
(Piegorsch and Bailer, 2005).

Regrettably, heteroscedastic errors in linear regression models are a
common occurrence in marine ecology. Heteroscedasticity is frequently
encountered in data collected at one point in time (aka cross-sectional
data). This type of data often contains heteroscedasticity problems for
diverse reasons: because marine organisms often have an aggregated,
rather than a random, spatial distribution (Beninger and Boldina, 2014;
Boldina and Beninger, 2013, 2014; Boldina et al., 2014; Zuur et al.,
2007), or because of sexual dimorphism, subpopulation differences, or
Fig. 7. Residual plot for testing homoscedasticity of residuals. A. Constant distribution (spread)
values increase. Data simulated in ‘R’.
model mis-specification (omitting important variables from the model
or including variables in incorrect algebraic form — Piegorsch and
Bailer, 2005; Zuur et al., 2009).

Heteroscedasticity in residuals does not result in biased parameter
estimates; however, once again the OLS estimator no longer has a
minimum variance, which is necessary for BLUE (Fig. 4). In such a case,
another estimator with lower variance can be used, for example the
GLS estimator (Demidenko, 2013). The violation of the assumption of
homoscedasticity produces unreliable standard error estimates of the
parameters. This in turn leads to bias in test statistics and confidence
intervals, which increases the probability of a Type I error (Härdle,
2004; Zuur et al., 2009). Although slight heteroscedasticity has minimal
effect on significance tests, severe heteroscedasticity is quite problematic
(Tabachnick and Fidell, 2007). It is impossible to define exactly when
heteroscedasticity becomes a serious issue (this is once again a matter
of individual judgment) but in general the linear regression model
becomes doubtful when the largest variance is more than four times
the lowest variance (Fox, 2008).

The simplest method to check this assumption is, once again, the
visual examination of residuals plotted against ‘fitted’ values (Zuur
et al., 2010). If the assumption of homoscedasticity is met, the pattern
of residuals will have approximately the same spread on both sides of
the horizontal line drawn through the average residual (Fig. 7A).
Heteroscedasticity is frequently manifested on the plot by a funnel
pattern with non-constant error variance (Fig. 7B).

The presence of heteroscedasticity in residuals is not always visually
obvious from the residuals plot alone (e.g. for large data sets), so more
formal tests for heteroscedasticity should be performed (Wright and
London, 2009). The choice of statistical test depends on the knowledge
we have about the characteristics of our data: the Breusch–Pagan test
is most suited to the detection of linear forms of heteroscedasticity
(Breusch and Pagan, 1979), while White's general test for hetero-
scedasticity (White, 1980) is more suited to the detection of non-
linear forms of heteroscedasticity or when the errors (i.e. residuals)
are non-normally distributed (Evans, 1992).

There are several strategies to deal with heteroscedasticity in resid-
uals. The first step is to verify if the model specification is correct
(the first step of linear regression). Sometimes including the variable
in correct form may resolve the issue. In cases where the independent
variable (X) is skewed, transformation is the simplest solution to the
problem (Hoffmann and Shafer, 2015). If neither of these approaches
succeeds in eliminating the heteroscedasticity, there are a variety of
statistical methods which can deal with heteroscedastic residuals,
such as Generalized Least Squares (GLS — Zuur et al., 2007), Weighted
Least Squares (WLS — Sheather, 2009), and robust standard errors
(Vittinghoff, 2011).
of residuals B. Heteroscedasticity apparent: the spread of residuals increases as the fitted
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As mentioned above, marine ecological data is very often afflicted
with heteroscedasticity in residuals. Notwithstanding, residual analyses
are rarely reported, and it is quite probable that many, if not most, of
the published linear regressions performed using the OLS method suf-
fer, to various degrees, from the consequences of heteroscedasticity in
residuals. We strongly recommend that marine ecologists routinely
check the assumption of heteroscedasticity, and familiarize themselves
with alternate regression methods such as GLS when deviation from
this assumption cannot be mitigated.
3.3. Assumption of normality

It is a popular misbelief that the dependent variable in linear regres-
sion must be normally distributed, perhaps because a non-normally
distributed dependent variable often results in violation of homoscedas-
ticity and linearity assumptions (Quinn and Keough, 2002). Neverthe-
less, in linear regression the assumption of normality only concerns
the error term, exactly as for the assumptions of homoscedasticity and
non-correlated residuals (Zuur et al., 2007). For the record, we should
emphasize that assumption of normality is not a Gauss-Markov as-
sumption. Hence, violation of this assumption is less critical than viola-
tion of the Gauss–Markov assumptions. Furthermore, normality of the
residuals' distribution is only necessary for the validity of subsequent
parametric tests on the regression coefficients, whereas the correct esti-
mation of the coefficients themselves only requires that the errors be
neither autocorrelated nor homoscedastic (Zuur et al., 2007).Moreover,
the assumption of normality in residuals distribution is critical only in
small data sets, which is not often the case in marine ecology. In large
samples, hypothesis tests are robust against violations of the normality
assumption because of the central limit theorem (Cottingham et al.,
2005; Fitzmaurice et al., 2011; Stewart-Oaten, 1995).

Violation of the assumption of normality may have several causes:
mis-specification of the model (e.g. when linear regression is applied
to a non-linear relationship), the presence of outliers (frequent in
ecological studies), or some cases of severe skewness of the dependent
variables. Once again, we can visually check the normality assump-
tion using residual plots, but the usual procedure is the Q–Q plot
(quantile–quantile plot), because the departure from normality is
more apparent, and it is possible to determine which part of the dis-
tribution is not fitted correctly. If the residuals are normally distrib-
uted, the points in the Q–Q-normal plot lie on a straight diagonal
line; obviously, a slight departure from this line is acceptable (Fig. 8A).
Assumption of normality fails when the residuals exhibit curvature
about the diagonal line (Fig. 8B).
Fig. 8. Q–Q plot for testing normality of residuals. A. Normal distribution o
The results of visual plot inspections should be carefully interpreted
in the light of the sample sizes. Very small samples give insufficient
information on the exact shape of the residuals distribution, whereas
in large samples, even small departures from normality may be dispro-
portionately visible in plots (Reimann, 2008).

If there is a need for further statistical analysis requiring normal
residuals distribution, transformations of independent variables may
normalize the distribution. In the case of large data sets with strong
non-normality, generalized linear models (GLM) are recommended
(Bolker et al., 2009; McCullagh and Nelder, 1989).

4. Validation of the regression model

Model validation is the last step of the regression analysis, and the
one with which most marine ecologists are at least partially familiar.
Unfortunately, in marine ecology this crucial step is often limited to
exhibiting a high R2 value. Considering the R2 as the unique, or even
main, benchmark for model fit is the most common, and most egregious,
pitfall in linear regression.

R2 (aka coefficient of determination) represents the proportion
of the total variance in the dependent variable Y “explained” by linear
regression model:

R2 = 1−SS res/SS total.

As such, R2 is a statistical measure of goodness of fit of the regression
model, i.e. it measures how close the data are to the fitted regression
line. R2 has two serious limitations: it does not reveal whether the
regression model is correctly specified (Section 2), or whether the
necessary assumptions have been respected (Section 3.2); the possi-
ble consequence is the calculation of biased coefficient estimates
(Weisberg, 2005). Consequently, a high value of R2 does not in it-
self suffice to validate the regression model. This critical point was
made most elegantly by Anscombe (1973) (the famous ‘Anscombe's
quartet’), and it is equally pertinent today. It is thus obvious that
reporting an R2 (even with a p-value), with no information on the re-
gression diagnostics, has no scientific value, and this practice should
cease completely.

In multiple and polynomial regression, high R2 values may occur
when the regression model is overfitted. Regression models with
more additional independent variables or higher - order polynomials
will naturally have higher R2 values (Sheather, 2009). Consequently,
a model with more predictors may appear to have a better fit simply
because it has more terms. In reality, overfitted models produce mis-
leadingly high R2 because they model the random noise component of
f residuals. B. Violation of normality assumption. Data simulated in R.
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the error term. Consequently, a much more appropriate statistic for
multiple linear and polynomial regression is the Adjusted R2, which
takes into account not only the goodness of fit of the model, but also
the number of predictors (Cohen, 2003).

Among the techniques for validating the regression model is the
t-test for regression coefficients, based on the t-score:

t = b1/SE

where b1 is the slope (regression coefficient) of the sample regression
line, and SE is the standard error of the slope. For multiple and polyno-
mial linear regression, the ANOVA F-ratio test is widely used (Quinn
and Keough, 2002). As mentioned above, however, the results of these
tests are only valid if all the regression assumptions are satisfied. Fur-
thermore, if the data set is large enough, the obtained t-values may
often be statistically significant (Beninger et al., 2012), regardless of
the goodness of fit. These validation statistics should therefore be
interpreted only in the light of the information concerning the model
specification and regression diagnostics; This information should be sup-
plied, ormade available, by the authors of everymanuscript in which linear
regression is used.
5. Conclusion

From the foregoing, it should be apparent that the ‘simple’ technique
of linear regression, when correctly performed, is actually a somewhat
more complex process, whose successful application requires several
verification procedures. The most serious and common errors encoun-
tered in the marine ecological literature are summarized in Table 2.
Incorrect linear regression may involve both errors in model specifica-
tion, as well as errors of omission if regression diagnostics are not
performed and reported. Residuals analysis is a neglected, but nonethe-
less key component of this verification process. Similarly, for a linear
regression model to be accepted as evidence, it is essential that valida-
tion go beyond the conventional reporting of R2 and p-values, to include
the results of the regression diagnostics. The absence of this information
from much of the marine ecological literature constitutes a serious
source of doubt concerning the results and conclusions of all such past
studies; it is hoped that the present paperwill help redress this situation
for future research.
Table 2
A rogue's gallery of the most serious/common errors in linear regression.

1) The error term of a regression equation is essentially useless, because the
published equation never includes it.

2) The characteristics of the error term have no bearing on the regression model
or on regression procedure.

3) It does not matter whether the model is actually linear in form, as long as the
R2 value is high.

4) If the data are not normally distributed, a straightforward linear regression is
not possible.

5) Residuals analysis is an esoteric procedure not relevant to, or necessary for,
everyday linear regression in marine ecology.

6) Data sets involving exponential terms should always be log-transformed
prior to regression analysis.

7) The more explanatory variables we include in a multiple linear regression
model, the more efficient it becomes.

8) Performing linear regression on time-series data presents no particular problem
of validity.

9) Performing linear regression on data collected across spatial units presents no
particular problem of validity.

10) Heteroscedasticity only concerns the data set, and in any event is not a common
linear regression problem in marine ecology.

11) Reporting R2 and p-values constitutes a meaningful representation of the validity
of a linear regression model.

12) A high R2 and low p-values are convincing evidence of a valid linear relation.
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